活动地点: 腾讯会议 880-9453-9739,
题目: 某些非线性发展方程的相似爆破解,
活动内容摘要: 本报告主要介绍 Zakharov方程,欧拉方程,NS方程,NLS方程的相似爆破解,主要用了近似相似爆破解的方法和理论。,
时间: 2023-06-10 08:40,
主讲人: 郭柏灵,
主讲人简介 郭柏灵(1936.10.23—),男, 汉族,福建龙岩人。应用数学家和计算数学家, 2001 年当选为中国科学院院士。现任北京应用物理与计算数学研究所研究员、博士生导师,曾任国家自然科学基金会数学专家组评委和组长,国家科技部 973 项目咨询专家;曾任《偏微分方程》、《计算数学》、《数学研究》、《北京数学》等杂志的编委、副主编,现任 Annals of Applied Mathematics 杂志主编, 曾任中国数学会理事,北京市数学会常务理事、副理事长等职。郭柏灵院士的研究工作涉及面很广,其中包括非线性发展方程及其无穷维动力系统, 随机无穷维动力系统, 孤立子数学理论等,先后发表论文五百余篇,现已出版 “郭柏灵论文集” 十二卷, 专著十五部(其中大部分已由外文出版)。已获得国家自然科学一等奖(集体),国家自然科学三等奖,国家光华科技二等奖,何梁何利奖,还先后两次获得国防科工委科技进步一等奖。,
题目: Recent progresses on the derivation of Onsager-Machlup action functional for stochastic systems ,
活动内容摘要: In this talk, we present some recent progresses on the derivation of Onsager-Machlup action functional for stochastic systems, including McKean-Vlasov stochastic differential equations, degenerate stochastic differential equations, degenerate McKean-Vlasov stochastic differential equations and degenerate stochastic differential equations driven by fractional Brownian motion.,
时间: 2023-06-10 09:25,
主讲人: 高洪俊,
主讲人简介 高洪俊,东南大学数学学院二级教授、博士生导师。担任Stochastics and Dynamics期刊编委。1994年在北京应用物理与计算数学研究所获理学博士学位,目前主要研究兴趣为随机偏微分方程及其动力学。享受国务院政府特殊津贴,获得国防科工委科技进步奖一等奖和教育部自然科学二等奖等奖项,入选江苏省“青蓝工程”中青年学术带头人、江苏省“333”工程高层次人才、江苏省“青蓝工程”科技创新团队带头人。在包括Adv. Math.、SIAM J. Math. Anal.、SIAM J. Appl. Dynamical Sys.、JLMS、IMRN、JDE和中国科学在内的国内外重要期刊发表论文多篇。多次主持包括国家自然科学基金重点项目的基金项目多项,参与973项目,目前主持国家自然科学基金面上项目。,
题目: Kolmogorov epsilon-entropy for uniform attractors of dissipative PDEs,
活动内容摘要: In this talk I will discuss the Kolmogorov’s \\varepsilon-entropy of uniform attractors for non-autonomous dissipative PDEs. The main attention is payed to the case where the external forces are not translation compact. This is a joint work with Dr. Yangmin Xiong(熊杨敏), Dr. A. Kostianko and Prof. S. Zelik.,
时间: 2023-06-10 10:25,
主讲人: 孙春友,
主讲人简介 孙春友,兰州大学数学与统计学院,教授,博士生导师。本科毕业于云南大学,2005年在兰州大学获理学博士学位。主要从事无穷维耗散动力系统和非线性分析的研究,部分工作发表在Izvestiya Math.、Trans. Amer. Math. Soc.、Math. Ann.、Proc. Amer. Math. Soc.、SIAM J. Math. Anal.、SIAM J. Applied Dyn. Systems、J. Differential Equations等学术期刊上。,
题目: Nontrivial equilibrium solutions and general stability for stochastic evolution equations with pantograph delay and tempered fractional noise ,
活动内容摘要: In this paper, we investigate the asymptotic behavior of stochastic pantograph delay evolution equations driven by a tempered fractional Brownian motion (tfBm) with Hurst parameter H>1\/2. First of all, the global existence, uniqueness, and mean-square stability with general decay rate of mild solutions are established. In particular, we would like to point out that our analysis is not necessary to construct Lyapunov functions, but we deal directly with stability via the Banach fixed point theorem, the fractional power of operators, and the semigroup theory. It is worth emphasizing that a novel estimate of stochastic integrals with respect to tfBm is presented, which greatly contributes to the stability analyses. Then after extending the factorization formula to the tfBm case, we construct the nontrivial equilibrium solution, defined for t\\in R, by means of an approximation technique and a convergence analysis. Moreover, we analyze the Holder regularity in time and general stability (including both polynomial and logarithmic stability) of the nontrivial equilibrium solution in the sense of mean square. As an example of application, the reaction diffusion neural network system with pantograph delay is considered, and the nontrivial equilibrium solution and general stability of the system are proved under the Lipschitz assumption.,
时间: 2023-06-10 11:10,
主讲人: 王亚娟,
主讲人简介 王业娟 兰州大学数学与统计学院教授。主要研究领域:动力系统在生物动力学、控制系统、大气科学和金融中的应用;非线性分析;偏微分(分数阶)方程、随机微分方程的理论、应用与数值模拟。2016年6月任博士生导师;2013年5月被聘任为教授;2009年9月-2010年9月在美国布朗大学应用数学系学术访问任Visiting Associate Professor;2008年12月任硕士生导师;2007年7月被聘任为副教授;2005年7月-2007年6月在上海大学365体育官方唯一入口从事博士后研究工作;2005年6月在兰州大学获理学博士学位;1996年9月至2000年6在西北师范大学获得理学学士学位。2020年获教育部自然科学二等奖。先后主持国家自然科学基金面上项目(数学和地学)、青年基金项目、留学回国人员基金、上海市优秀青年教师基金、中央高校基本科研业务费等。已刊出专著《Critical parabolic-type problems》,在《SIAM J. Math. Anal.》、《SIAM J. Numer. Anal.》、《J. Diff. Eqns.》、《J. Diff. Differ. Eqns.》、《Chaos》、《Quart. Appl. Math.》、《Disc. Contin. Dyna. Syst.》、《Eur. Phys. J. Plus》等杂志上发表学术论文50多篇。目前担任美国数学会《数学评论》评论员。,
题目: Approximations of stochastic nonlocal partial differential equations by colored noise,
活动内容摘要: This talk is devoted to investigating the well-posedness and asymptotic behavior of a class of stochastic nonlocal partial differential equations driven by nonlinear noise. First, the existence of a weak martingale solution is established by using the Faedo-Galerkin approximation and an idea analogous to Da Prato and Zabczyk. Second, we show the uniqueness and continuous dependence on initial values of solutions to the above stochastic nonlocal problem when there exist some variational solutions. Third, the asymptotic local stability of steady-state solutions is analyzed either when the steady-state solutions of the deterministic problem is also solution of the stochastic one, or when this does not happen. Next, to study the global asymptotic behavior, namely, the existence of attracting sets of solutions, we consider an approximation of the noise given by Wong-Zakai's technique using the so called colored noise. For this model, we can use the power of the theory of random dynamical systems and prove the existence of random attractors. Eventually, particularizing in the cases of additive and multiplicative noise, it is proved that the Wong-Zakai approximation models possess random attractors which converge upper-semicontinuously to the respective random attractors of the stochastic equations driven by standard Brownian motions. ,
时间: 2023-06-10 14:00,
主讲人: Tomás Cara,
主讲人简介 :Tomás Caraballo, Professor of University of Sevilla, Spain. His research topics include stochastic partial differential equations, asymptotic behaviour of dynamical systems, multivalued dynamical systems, non-autonomous differential systems and partial functional differential equations (deterministic and stochastic). He is the associate editor of the Journal of Nonlinear Analysis TMA, Associate Editor of the Journal Discrete and Continuous Dynamical Systems-series S, Advisory Editor for Open Mathematics. He is also the guest editor of several special issues for Discrete and Continuous Dynamical Systems, series A, series B, series S, Journal of Difference Equations and Applications and International Journal of Bifurcation and Chaos.,
题目: Global existence, regularity, and dissipativity of retarded reaction-diffusion equations with supercritical nonlinearities ,
活动内容摘要: In this talk I will introduce some recent results on global existence, regularity and dissipativity of retarded reaction-diffusion equation\n&∂tu-Δu=f(u)+Gut+h,&u∂Ω=0,uΩ×[-r,0]=ϕ\n in a bounded domain \\Omega\\subset\\mathbb{R}^d with fast-growing nonlinearities, where\nG\\left(u_t\\right)=g\\left(u\\left(x,t-r_1\\left(u_t\\right)\\right),\\cdots,u\\left(x,t-r_m\\left(u_t\\right)\\right)\\right),\\ \\ 0\\le r_i\\left(u_t\\right)\\le r,\nand u_t is the shift of the solution\\ u(t) in appropriate functional spaces,\nu_t\\left(s\\right)=u\\left(t+s\\right),\\ \\ \\ \\ \\ \\ \\ s\\in[-r,0].\n,
时间: 2023-06-10 14:45,
主讲人: 李德生,
主讲人简介 李德生,天津大学教授、博士生导师,美国工业与应用数学会(SIAM)高级会员。长期从事动力系统和非线性微分方程的定性理论及其应用方面的研究工作,研究兴趣包括非线性发展方程的吸引子理论、非光滑系统的Morse理论及其应用、Conley指标与分支问题、线性算子的主特征值问题,等。在《Indiana Univ. Math. J.》、《SIAM J. Cont. Optim.》、《SIAM J. Appl. Dyna. Systems》、《J. Diff. Eqns.》、《Topology Appl.》、《Disc. Contin. Dyna. Systems》等国际重要期刊发表论文50余篇,主持国家自然科学基金面上项目6项,省、市自然科学基金项目3项。,
题目: Sigmoidal approximations of a delay neural lattice model with Heaviside functions,
活动内容摘要: This talk is about the solutions and the attractors of the following delay neural lattice model with heaviside functions: \n\\frac{d}{dt}u_\\mathbf{i}\\left(t\\right)=f_\\mathbf{i}\\left(u_\\mathbf{i}\\left(t\\right)\\right)+\\sum_{\\mathbf{j}\\in\\mathbb{Z}^d}\\hairsp k_{\\mathbf{i},\\mathbf{j}}H\\left(u_\\mathbf{j}\\left(t-\\tau_{\\mathbf{i},\\mathbf{j}}\\right)-\\theta\\right)+g_\\mathbf{i},\\mathbf{i}\\in\\mathbb{Z}^d,\nwhere \\theta>0 is a given threshold and H:\\mathbb{R}\\rightarrow\\mathbb{R} is the Heaviside function defined by H\\left(x\\right)=&1,x≥0,&0,x<0, x∈R. Joint work with Xiaoli Wang and Peter E. Kloeden.\n,
时间: 2023-06-10 15:30,
主讲人: 杨美华,
主讲人简介 2006年毕业于兰州大学基础数学系,获得理学博士学位。毕业后到南京大学数学系从事博士后研究,在2008年博士后出站后进入华中科技大学数学与统计学院工作。2011年被华中科技大学聘为教授。 主要从事无穷维耗散动力系统的长时间动力学行为的研究、在深入研究无穷维动力系统全局吸引子存在性的基础上,重点研究它们的结构以及复杂性。在本专业重要国际期刊Transactions of the American Mathematical Society、Journal of Differential Equations、Nonlinearity等杂志上发表论文多篇。2011年获华中科技大学“学术新人奖”,2012年入选2012年度教育部“新世纪优秀人才支持计划”, 2015年,2019年获批主持国家自然科学基金面上项目。,
题目: Attractors of solutions for non-autonomous suspension bridge equations with delay,
活动内容摘要: In this talk, we are mainly concerned with existence of compact attractors for the non-autonomous suspension bridge equations with different delay, including the time delay, the distributed delay, the variable delay and the state-dependent delay.,
时间: 2023-06-10 16:30,
主讲人: 马巧珍,
主讲人简介 马巧珍,西北师范大学数学与统计学院二级教授,博士生导师,全国青联第十一届委员,美国《数学评论》评论员。从事无穷维动力系统和随机动力系统的科研工作,在《J. Diff. Equ.》,《Discrete Contin. Dyn. Syst. Ser.B》,《J. Math. Anal. Appl.》,《J. Dyn. Diff. Equ.》,《Nonl. Anal.》,《数学学报》,《数学年刊》和《中国科学(数学)》等刊物发表学术论文。主持国家自然科学基金项目4项,省部级项目4项。荣获甘肃省自然科学二等奖、甘肃省青年科技奖和甘肃省青年教师成才奖。,
题目: Global attractor of the Euler-Bernoulli equations with a localized nonlinear damping,
活动内容摘要: In this talk, we consider the long-time behavior of the Euler-Bernoulli equations with a localized nonlinear damping. The chief difficulty in the theoretical analysis of global attractors is that the effectively damping is located in a small neighborhood of the whole boundary, such that the classical theory of infinite dimensional dynamical systems can not be applied to investigate the long-time behavior of such model. To overcome this difficulty, we will prove the existence of a bounded absorbing set by a unique continuation result for Euler-Bernoulli equation and the multiplier methods. Based on these results, we have also established the asymptotical quasi-stability property, which entails the existence of a global attractor with finite fractal dimension.,
时间: 2023-06-10 17:15,
主讲人: 尤波,
主讲人简介 尤波,西安交通大学数学与统计学院教授、博士生导师, 2012 年毕业于兰州大学,2014 年 9 月-2015 年 9 月曾访问美国佛罗里达州立大学,2022年晋升为西安交通大学数学与统计学院教授,主要研究领域为非线性泛函分析与无穷维动力系统。迄今为止,已在 JDDE, AMO,NA, ZAMP, CMS, DCDS 等杂志发表学术论文 40 余篇。曾主持完成一项国家自然科学基金青年项目、面上项目和天元数学讲习班,两项陕西省自然科学基金面上项目。,
题目: Approximating long-time statistical properties of complex dynamical systems,
活动内容摘要: It is well-known that physical laws for large chaotic systems are revealed statistically. We consider temporal and spatial approximations of stationary statistical properties of dissipative chaotic dynamical systems. We demonstrate that appropriate temporal\/spatial discretization viewed as discrete dynamical system is able to capture asymptotically the stationary statistical properties of the underlying continuous dynamical system provided that appropriate Lax type criteria are satisfied. We also show a general framework on when the long-time statistics of the system can be well-approximated by BDF2 based schemes. Application to the infinite Prandtl number model for convection as well as the two-dimensional barotropic quasi-geostrophic equations will be discussed.,
时间: 2023-06-11 08:30,
主讲人: 王晓明,
主讲人简介 王晓明教授1996年获得美国印第安那大学布鲁明顿分校博士学位。随后两年,在纽约大学著名的库朗研究所从事博士后研究(库朗讲师);1998年加入爱荷华州立大学数学系,2001年晋升为副教授并获终身教职;2002年先后在库朗研究所和普林斯顿高等研究院担任研究员;2003年受邀加盟佛罗里达州立大学,任终身教授,2006晋升为正教授。在佛罗里达州立大学任职期间,曾担任应用和计算数学主任(2009-2012)和数学系系主任(2012-2017)。2017年受邀加盟母校复旦大学,任特聘教授;2018年加盟南科大,任数学系讲席教授。 王晓明教授的研究重点是应用和计算数学,尤其是与气候变化和地下水研究有关的数学问题。他的工作的一个显著特点是严谨的数学和真实应用的有机结合。已在剑桥大学出版社出版专著一本,在CPAM, JFM等杂志发表学术论文90余篇。,
题目: Sharp upper and lower bounds of the attractor dimension for 3D damped Euler-Bardina equations,
活动内容摘要: The dependence of the fractal dimension of global attractors for the damped 3D Euler-Bardina equations on the regularization parameter α>0 and Ekman damping coefficient γ>0 is studied. We present explicit upper bounds for this dimension for the case of the whole space, periodic boundary conditions, and the case of bounded domain with Dirichlet boundary conditions. The sharpness of these estimates when α→0 and γ→0 (which corresponds in the limit to the classical Euler equations) is demonstrated on the 3D Kolmogorov flows on a torus.,
时间: 2023-06-11 09:15,
主讲人: S.Zelik,
主讲人简介 Sergey Zelik,英国萨里大学教授,兰州大学高端外专教授,主要从事无穷维动力系统和偏微分方程的研究。1989-1994进入莫斯科大学数学与物365体育官方唯一入口学习;1994-1998在莫斯科国立大学攻读博士,师从Mark Vishik 教授,于1998年获得数学博士学位,2004年获得数学物理科学博士学位(Habilitation);2003-2005在德国Stuttgart大学作洪堡学者,2015年晋升为教授。多篇论文发表在Comm. Pure Appl. Math.,Mem. Amer. Math. Soc.,Physical Review Letters,Arch. Ration. Mech. Anal.,Trans. Amer. Math. Soc.等国际重要学术期刊上。,
题目: On the functionalized Cahn-Hilliard equation with logarithmic potential: well-posedness, global attractor and numerical analysis,
活动内容摘要: We consider a class of six-order Cahn-Hilliard equations with logarithmic Flory-Huggins potential. We prove the existence and uniqueness of a global weak solution and the existence of the global attractor in a complete metric space. Next, we present a first order semi-implicit finite difference scheme, which is uniquely solvable, unconditionally energy stable and keeps the positivity-preserving property at the discrete level. The talk is based on the joint work with G. Schimperna (Pavia), W.-B. Chen and J.-Y. Jing (Fudan).,
时间: 2023-06-11 10:15,
主讲人: 吴昊,
主讲人简介 吴昊,复旦大学数学科学学院教授,2003年毕业于复旦大学获理学学士学位,2007年毕业于复旦大学获理学博士学位。主要研究在材料科学与力学中有重要应用的几类非线性发展方程的适定性和稳定性理论,并取得一系列成果。目前,已在《Arch. RationalMech. Anal.》,《SIAM J. Math. Anal.》,《Ann. Inst. H. Poincare Anal. Non Lineaire》,《Math. ModelsMethods Appl. Sci.》,《Calc. Var. Partial Differential Equations》,《J. DifferentialEquations》等高水平杂志上发表论文40余篇。2015年获中国工业与应用数学学会优秀青年学者奖,2016年入选上海市青年拔尖人才。,
题目: 无穷维空间中相互作用随机粒子系统中的小参数逼近,
活动内容摘要: 我们考虑一类无穷维相互作用的随机粒子系统的平均场极限,并给出在小质量极限时的逼近。由于粒子是定义在无界区域上的,因此该结果给出了一个无界区域上的Smoluchowski-Kramers逼近。,
时间: 2023-06-11 11:00,
主讲人: 王伟,
主讲人简介 王伟,南京大学数学系教授、博士生导师,2005年博士毕业于南京大学数学系。先后在中科院应用数学所和澳大利亚阿德莱德大学做博士后研究。主要研究兴趣是随机偏微分方程的有效约化和多尺度复杂问题的随机建模,在随机平均,随机不变流形,随机齐次化等方面做了大量工作。先后主持国家自然科学基金青年科学基金、面上项目等。在Comm. Math. Phys.、SIAM J. Math. Anal.、SIAM J. Appl. Dyna. Syst.、IMA J. Appl. Math.、J. Diff. Equ.等国际本领域知名学术期刊上发表学术论文,出版专著一部。,
题目: The Cahn-Hilliard equation with a source term,
活动内容摘要: Alain Michel Miranville教授,无穷维动力系统和相变模型领域国际著名数学家。早年于巴黎第十一大学跟随著名数学家Roger Temam院士取得博士学位。1998年担任法国普瓦捷大学终身教授,2010-2018年,担任普瓦捷大学数学系系主任。2015年,任普瓦捷大学特聘教授与讲座教授。现为SCI期Discrete and Continuous Dynamical Systems-Series S(DCDS-S)主编,SCI期刊Advance in Nonlinear Analysis, Appl. Math. Optimization, Communications on Pure and Applied Analysis(CPAA),Mathematical Methods in the Applied Sciences(MMAS)等多个杂志编委,AIMS会员以及AIMS科学委员会会员,AIMS历届会议科学委员会会员。迄今为止,Miranville教授发表SCI论文200余篇。Miranville教授主要从事非线性偏微分方程的研究,特别是侧重抛物型偏微分方程的定性理论、生物与医学中数学模型、相变理论、无穷维动力系统等。曾应邀访问美国、法国、德国、中国等国的大学和研究机构,并多次在国际会议上作学术报告和组织过多次国际学术会议。,
时间: 2023-06-11 14:00,
主讲人: M. Alain,
主讲人简介 Our aim in this talk is to discuss the Cahn-Hilliard equation with a (nonlinear) source term and a logarithmic potential. In particular, we discuss the existence of weak solutions and additional regularity. Such an equation has applications in image processing, biology, tumor growth, ...,
题目: 具有非标准增长条件的非自治及随机抛物方程的吸引子 ,
活动内容摘要: 本报告主要介绍具有非标准增长条件的非自治和随机抛物方程吸引子的性质。先给出带有时空依赖变指数非线性项的抛物方程拉回D-吸引子的存在唯一性以及拉回D-吸引子关于扰动参数的上半连续性。再给出由线性乘性噪声驱动的带有空间依赖变指数非线性项的抛物方程的随机吸引子的存在唯一性。最后给出由非线性乘性噪声驱动的带有空间依赖变指数非线性项的抛物方程变分解的存在性以及弱D拉回平均随机吸引子的存在唯一性。(该工作是与刘志明和张江卫一起合作完成的。),
时间: 2023-06-11 14:45,
主讲人: 黄建华,
主讲人简介 黄建华,国防科技大学教授,博士生导师,主要研究非线性系统的行波解和随机动力系统的动力学,先后完成国家自科基金面上项目3项,参加1项重点项目,先后获得湖南省自然科学二等奖1项,国家教学成果二等奖1项。,
题目: Invariant manifolds of nonautonomous dynamical Systems without spectral gap condition and attempts in the stochastic directions,
活动内容摘要: We consider an abstract nonautonomous dynamical system defined on a general Banach space. Under some conditions we prove that the system admits a finite-dimensional Lipschitz invariant manifold with an exponential tracking property acting on a local range. We then apply this general framework to two types of nonautonomous evolution equations driven by time-dependent additive\/multiplicative forces on a 2-D rectangular domain or a 3-D cubic domain. It is significant that on the 3D domain the spectrum of the linear unbounded operator in the principal part does not have arbitrarily large gaps. Some attempts in the stochastic directions are also mentioned.,
时间: 2023-06-11 15:30,
主讲人: 王荣年,
主讲人简介 王荣年,博士,上海师范大学教授、博士生导师(应用数学)。目前主要从事非线性发展方程适定性、多值扰动及解集的拓扑正则性、不变流形、不变测度等问题的研究,完成的研究结果已被Mathematische Annalen、Int Math Res Notices、SIAM Journal on Mathematical Analysis、SIAM Journal on Applied Dynamical Systems、Journal of Functional Analysis、Journal of Differential Equations等学术期刊发表,主持承担了2项国家自然科学基金面上项目、国家自然科学基金青年项目、6项省厅级基金项目。曾获聘广东省高等学校省级培养对象等。近年来先后访问罗马尼亚科学院和雅西大学、奥地利克拉根福特大学、美国杨百翰大学和佐治亚理工学院等。,
题目: Uniform attractors for nonclassical diffusion equations with perturbed parameter and memory,
活动内容摘要: This talk is devoted to studying of the existence of uniform attractors for nonclassical diffusion equation with perturbed parameter and memory on a bounded domain. The main feature of this model is that the equation contains a dissipative term with perturbation parameters and the nonlinearity f satisfies the polynomial growth of arbitrary order. By using the nonclassical operator method and a new analytical method (or technique), the existence and regularity of uniform attractors generated for this equation are proved. Furthermore, we also get the upper semicontinuity of the uniform attractors when the perturbed parameter goes to 0.,
时间: 2023-06-11 16:30,
主讲人: 谢永钦,
主讲人简介 谢永钦,理学博士,长沙理工大学数学与统计学院教授,硕士生导师,1986年6月毕业于湘潭大学数学专业,获理学学士学位。2007年6月毕业于兰州大学数学与统计学院,并获博士学位。1986年7月—2000年元月,在湖南农业大学365体育官方唯一入口工作。2000年元月调入长沙理工大学数学与统计学院工作至今。主要从事无穷维动力系统的研究,发表论文70余篇。主持或主要参与各科研项目20佘项,曾获省级自然科学二等奖。,
题目: Long-term behavior of weakly damped wave equation with low regular forcing term,
活动内容摘要: The dissipative wave equation with critical and sup-critical nonlinearity and lower regular forcing term which belongs to H^{-1}(\\mathbb{R}^3)in the whole space \\mathbb{R}^3 are considered. The well-posedness of Translational Regular solutions are achieved by establishing extra space-time translational regularity of the energy solution. Furthermore, the existence of global attractors in the naturally defined energy space H^1(\\mathbb{R}^3)\\times L^2(\\mathbb{R}^3) are also built up.,
时间: 2023-06-11 17:15,
主讲人: 孟凤娟,
主讲人简介 孟凤娟,南京大学理学博士,新加坡国立大学访问学者,江苏理工学院教授,苏州科技大学硕士生导师,江苏高校“青蓝工程”优秀青年骨干教师,江苏高校“青蓝工程”中青年学术带头人,江苏省青年科学家年会执委,江苏省中学生科技创新后备人才培育计划导师,江苏省高等学校数学教学研究会常务理事,江苏省工业与应用数学学会理事,江苏省十四五重点学科方向带头人,常州市数学学会副理事长。主要从事非线性泛函分析与无穷维动力系统的研究,发表论文30余篇,相关结果发表在J. Differential Equations, Discrete Contin. Dyn. Syst. Ser. B, Topol. Methods Nonlinear Anal., Nonlinear Analysis,J. Math. Phys.等刊物上,主持完成国家自然科学基金3项,其中天元基金1项,青年基金1项,天元讲习班项目1项,科研成果获江苏省高校科技成果奖1项(排名第一),江苏省工业与应用数学学会青年科技奖等。\n\n,